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Self-consistent bond polarizabilities are defined and computed for butadiene, benzene,
naphthalene and anthracene. A self-consistent derivation of the bond order-bond length
relationship is given and self-consistent formulae for force constants are obtained. Theoretical
bond lengths for butadiene, naphthalene and anthracene are calculated in two ways; firstly
by using the same values of fi,s and y» for all bonds and secondly by allowing these to vary
with bond length. The agreement with experiment is very satisfactory although in some
respects the first set of results is to be preferred. Force constants for ethylene and benzene
are found which have the correct orders of magnitude although the detailed agreement is not
always very good and the interaction force constant between meta bonds in benzene is pre-
dicted to have the wrong sign.

Des polarisabilités de liaison self-consistantes sont définies et calculées pour le butadiéne,
le benzéne, le naphtaléne et I’anthracéne. Une dérivation self-consistante de la relation entre
Vindice de liaison et la longueur de liaison est obtenue, ainsi que des formules self-consistantes
pour les constantes de force. Les longueurs théoriques des liaisons pour le butadiéne, le naph-
taléne et Panthracéne sont calculées de deux manibres: tout d’abord en utilisant les mémes
valeurs de frs et yrs pour toutes les liaisons, puis en les faisant varier avec la longueur de la
liaison. L'accord avee expérience est tréds satisfaisant, quoique, d’un certain point de vue, le
premier groupe de résultats doit étre préféré & autre. Les constantes de force caleulées pour
Péthyléne et le benzéne ont un ordre de grandeur correct quoique dans le détail Paccord ne
soit pas toujours trés bon et que la constante de force d’interaction entre liaisons en méta du
benzéne soit obtenue avec le signe contraire.

Es werden selbstkonsistente Bindungspolarisierbarkeiten definiert und fiir Butadiene,
Benzol, Naphthalin und Anthrazen berechnet. Ebenso wird in diesem Rahmen eine Ableitung
fiir eine Beziehung zwischen Bindungsordnung und Bindungslinge sowie ein Ausdruck fiir
die Kraftkonstanten angegeben. Die Bindungslingen werden auf zwei Wegen berechnet:
einerseits mit gleichen fr. und y»s fiir alle Bindungen und andererseits mit Werten, die von der
Bindungslénge abhingen. Letztere ergeben sich in befriedigender Weise, wahrend bei den
Kraftkonstanten in bezug auf Einzelheiten Abweichungen zu verzeichnen sind.

1. Introduetion

Paper I [2] of this series described and developed & self-consistent perturbation
theory for conjugated molecules. Although the theory is general enough to deal
with any perturbation which is the sum of one electron terms, in I and the subse-
quent papers the only perturbations considered were those which changed the
diagonal matrix elements of the one electron operator. In the present paper we
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shall extend the number of applications of the theory by considering perturba-
tions which change the off-diagonal matrix elements corresponding to carbon-
carbon bonds.

Just as it is possible to define self-consistent atom-atom polarizabilities ana-
logous to Hiickel atom-atom polarizabilities so it is possible to define self-consistent
bond-bond polarizabilities which can be used to find changes in the carbon-carbon
bond orders due to changes in the 8,5 and y,s integrals between neighbouring
carbons [6]. For example, the introduction of a heteroatom into a pure hydro-
carbon will change these integrals although such changes are likely to be small
and, therefore, much less important than the changes in fy, and y,r at the hetero-
atom which were considered in papers III and IV [I]. A more interesting example
concerns the calculation of bond orders taking into account the variations of the
Brs and yps from their benzene values due to different equilibrium bond lengths.

One of the most satisfactory applications of Quantum Chemistry has been the
use of bond orders to compute equilibrium bond lengths in hydrocarbons [6]. That
there exists a relation between bond order and bond length can be proved easily
for Hiickel theory [4, 8]. A very similar proof can be given for self-consistent
theory as we shall show. This involves expanding the n-electron part of the total
energy as a Taylor series about the equilibrium bond lengths, which can partly
be done using the expressions deduced in paper I for the first and second order
terms in a perturbation expansion of the energy expression. These must, however,
be slightly modified to allow for the changes in the two electron integrals yys. The
new expressions are obtained in the Appendix. The first order terms give the bond
length-bond order relation while the second order terms are related to the stretch-
ing and interaction force constants so that self-consistent formulae can be ob-
tained for these.

2. Bond Polarizabilities

Paper I [2] contains the equations which give the first order change P’ in the
bond order matrix P due to a perturbation z of the matrix elements of the one
electron operators. If zps = 0 for all 7, s except 7 = s = u and zyy = 1 in units of
B(B = —4.78 V) then the diagonal elements of P’ will be the self-consistent atom-
atom polarizabilities

ie. Typ = ,:w .
In a similar way the self-consistent bond polarizabilities can be defined.

Suppose m and # and p and ¢ refer to pairs of bonded carbons. If z,s = 0 for all 7
and s except 7,8 = m,n and 2y = 2pm = 1 then the bond polarizabilities will be

ﬂmn,pq = P;)q . (2-1)

There will, of course, be other non-zero elements of P’ apart from those referring
to carbon-carbon bonds. However, for alternant hydrocarbons many of these are
zero. For example, the diagonal elements of P’ will be zero so that the atom-bond
polarizabilities are zero

ie. Tmn,rr = 0.

They will not be zero for non-alternants, however.
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Table 1. Bond polarizabilities mun,pq

Butadiene Benzene
mn mn
pq 1,2 23 »q 12
12 .090 -.239 12 507
23 -.239 .636 23 —.447
34 .090 -.239 34 326
45 —.266
Naphthalene
mn
Pq 12 23 19 9,10
12 418 —~.456 —.408 146
23 —.458 636 327 -.119
34 .292 —~.456 -.235 146
56 -.078 100 109 146
67 100 -112 —.148 -.119
78 —.092 400 156 146
19 —-.408 327 617 -~.221
410 -.235 327 304 -.221
5,10 109 ~.148 —.142 -.221
8,9 156 ~-.148 -.314 -.221
9,10 146 ~.119 —-.221 465
Table 1. Continued
Anthracene
mn
pq 12 23 1,11 9,11 11,12
12 379 —.442 —.383 A70 .094
23 —.442 .666 306 -~.167 -—.064
34 268 —.442 ~.207 A13 094
56 —-.026 .035 037 ~.082 .056
67 .035 —.044 —-.053 114 —-.065
78 —-.028 .035 044 ~.098 .056
1,11 —.383 .306 638 ~-.348 -4
412 -.207 .306 .269 —.148 -.151
5,13 037 —.053 —.053 116 -.085
8,14 044 ~.053 -.073 169 —.085
9,11 A70 -.167 —.348 590 —-.275
10,12 A13 -.167 —.148 321 —-.275
10,13 —.082 114 116 —.251 85
9,14 —.098 114 169 —.425 185
11,12 094 —.064 -A51 —.275 507
13,14 .056 —.085 -.085 185 —-.079

93

It is sometimes useful to express the polarizabilities as partial derivatives of
the bond orders with respect to the fy; and ys integrals. Clearly

0Py
o ,an

= Ttmn,pyq

(2.2)
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and using the results of the appendix

OPpq
o VYmn

= — % PunTmn,pq - {2.3)

Using the numerical method and integral values described in paper I the bond
polarizabilities for butadiene, benzene, naphthalene and anthracene have been
computed. The values are given in Tab. 1.

3. Series expansion of the ;v energy W

In order to deduce a bond order-bond length relationship and expressions for
force constants in the context of the SCF method it is necessary to find the first
and second. order changes in W when CC bond lengths are changed from their
equilibrium lengths. To do this Eqs. (A6) and (A7) of the Appendix may be used.

Any change in the CC bond lengths will change the integrals 85 and . We
shall assume that a change in the bond length of the bond rs will change the
integrals fys and yps for that bond only and that these integrals are unique fune-
tions of the bond length of bond rs only. To make this more explicit it is con-
venient to use a single index to label the bonds, say ¢ to label the bond rs, so that
if R; is the bond length

Brs = Pi = B(Ri) 3.1)
yrs = yi = p(By) (3.2)

and B(R) and y(R) are the same functions for all bonds. It is important to notice
that a sum over all indices r and s, referring to bonded carbons, equals twice the
sum over all bonds :.

If a bond length changes from the equilibrium length R} to R? + A R; the new
values of f§; and y; will be given, correct to second order, by

fi = B(RY) + B'(RY) AR; + 3 f"(BY) (AR (3.3)
i = y(B}) + y'(B}) ARi + & y"(R]) (ARy)? (3.4)
where the primes denote derivatives of the functions defined by (3.1) and (3.2).
Third and higher order terms for 8; and y; will not be needed here. Unfortunately

(3.4) implies that there will also be changes in the quantity fss (see section 5 of
paper I) since this is defined in terms of the yys. It follows that

fus = By — 31y (R) ARs — } 50(BY) (ARep? (3.5)

where the sums are over all bonds which include the carbon atom s. Note that
unlike §; and y; the fiss are, in general, functions of more than one of the bond
lengths.

The change in W due to the changes in the fs;, f; and y; is obtained by using
(A6) and (A7) with the following expressions for zps:

2 = — S8y (BY) AR — § S5y (BY) (AR:)?

2z = (B} AR + & p(E]) (AR:)*

2ty = 0 otherwise . (3.6)
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Values for ¢’(¢r,us) are also needed. Except for g'(sr,rs) and ¢'(sr,sr) where s and 7
are bonded carbons they will be zero. The non-zero values are

g'(srsr) = 2y"(R}) AR; + y"(R?) (A R;)?

g'(srrs) = — ' (BY) AR — 3 y"(BY) (AR (3.7)
If the final result is written in the form
W=W+ SWiAR +% 3T Wi AR AR; (3.8)
i i

then the expression for the W; is quite compact:
Wi = oiy/(RY) + 2P} B'(BY) — (P y'(BY) (3-9)
where, if ¢ is the bond s,
v = P P~ P~ Pl
For alternants P?, = P% = 1 so that
Wi = —y'(B})+ 2P} '(RY) — 3(P})*y'(BY) . (3.10)
The expressions for Wj; are very complex especially for non-alternants. Therefore,

we shall give them only for alfernants since these are the only molecules to which
they will be applied in this paper. The results are

Wiz=—y"(B}) + 2P} B"(R}) — $(P1)?y"(RY) +
+ 208 (BY) — & PYy' (R P i (3.11)
and
Wy =2[f(RY) — § PUy/(ROTIBRD) — 3 P2 y/(Rlmey  (342)

where if 4 is the bond r,s and j the bond ¢,u, 7t1,s = 7ys s and 71, = 7075, 50-

4. Bond Order-Bond Length Relations

To derive the bond order-bond length relationship the usual methods will be
followed (see, for example, [11, 15]) except that the SCF expression for the changes
in W will be used. It will be assumed that the g-electron energy is the sum of
independent contributions from the CC bonds

F= z f(Ry) (4.1)
%
where f(R) is some unique function. Expanding to second order for changes from
equilibrium lengths gives
F= SR+ S{(RNAR +3 3 (R AR, (4.2)
% K2 2
The total energy E will be the sum of F and W [Eq. (3.8)] so that the first order
correction to & will be
2 [F(BY) + ery"(BY) + 2P B(BY) — 5(PY)2 9" (R ARy . (4.3)
1
The condition that the R{ are the equilibrium bond lengths is that (4.3) should be
zero for any changes A R;. This means that for all the bonds 1,
F(BY) + ey (BY) + 2P) B'(RY) — 3(PP)?y'(R?) = 0. (4.4)
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Since f, ¢ and g are unique functions of R; Eq. (4.4) implies that there is a relation
between R and P i.e. the bond order-bond length relation. To find the actual
form of this relation £, y and § need to be known explicitly as functions of R;. More
recent work, however, has tended to prefer empirical bond order-bond length
relationships which can then be used in conjunction with (4.4) to express f in
terms of y and B[4, 11, 15]. An example of this for alternants, is the linear relation

RY = 1.517 — 0.180 P? (4.5)

(where R is in A) suggested by Courson and Gormsiewski [5]. However, if
f(R;) is assumed to have parabolic form and §'(R;) and y'(R;) are taken to be
essentially constant for the range of values of R; which we need to consider, then,
for alternants, (4.4) gives rise to the form

R} = A+ B[P} 4 K(P)] (4.6)

where kis —y'/4p'. Except for a numerica) factor in the value for k* this is a relation
similar to that suggested by Binsc, HEILBRONNER and MURRELL [3]. For reasons
which will be discussed later we take % = & and using this value and fitting the
constants 4 and B to the experimental data for benzene and ethylene gives

RY = 1.505 — 0.149 [P? + 0.125 (P?)?]. (4.7)

With the values normally obtained for P} there is little to choose between (4.7)
and (4.5). This is shown in Tab. 2 where we have used the values of the P? for the
various bonds in butadiene, naphthalene and anthracene to compute R using
both (4.5) and (4.7). There is very little difference between the two sets of values
and both sets agree quite well with experiment. It is, however, worth pointing out
that as P? -» 0, R? should tend to the bond length of a pure sp* — sp? single bond.
Eq. (4.7) predicts this to be 1.505 A which is probably fairly close to the correct
value while (4.5) gives a value of 1.517 A which is probably too large.

Although the agreement between the calculated and experimental bond
lengths in Tab. 2 is quite good it is interesting to investigate one way in which it
might be improved still further. Tt should be noted that the values of the P} given
in Tab. 2 are SCF values computed on the assumption that the y; and f; are the
same for every bond. Since they are not an improvement might be obtained by
recalculating the bond orders allowing for the variations in y; and f;. To do this
y; and fB; have to be written explicitly as functions of E. Since the expressions
which have been given in the literature vary considerably and are usually rather
complicated we shall simplify by taking only the first two terms of a Taylor series
using the Pariser and Parr values of y; and g; for benzene to fix two of the con-
stants. This gives

Bi(Ri) = 0.5 + g(R; — 1.397) (4.8)
yi(Ry) = —1.485 + h(R; — 1.397) (4.9)
where the units of energy are those of § = —4.78 eV and of length A. Clearly g

and % equal the values of 8; (R;) and y; (R;) at the benzene equilibrium bond length
and so the more complicated expressions given in the literature can be used to

* This is due to the fact that in Ref. [3] W is taken to be twice the sum of the orbital
energies for the occupied orbitals.
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Table 2. Comparison of Brperimental and Theoretical Bond Lengths in A

Molecule Bond Experimental Calculated with Caloulated with
X rav Eleetron fixed y; and p; variable y; and B
diffraction  P%  Budd) Ry(B) PY% + Py Ry(d)

Butadiene 1—2 1.337» 0.936 1.349 1.349 0.961 1.344
2—3 1.483 0.352 1.454 1.450 0.286 1.466

Naphthalene 1—2 1.3640 1.871¢ 0748 1.382 1.383 0.773 1.378
2—3 1.415 1.412 0.581 1.413 1412 0.549 1.418

1—9 1.421 1.422 0.533 1.421 1.420 0.513 1.425

9—10 1.418 1.420 0.553 1.418 1.417 0.586 1.412

Anthracene  1—2 1.368® 1.390¢ 0770 41.378 1.379 0.811 1371
2—3 1.419 1.419 0.553 1.418 1.417 0.500 1.427

1—11 1.436 1.420 0499 1.427 1426 0.458 1.435

9—11 1.399 1.404 0.612 1407 1.407 0.624 1.405

11—12 1.428 1.425 0.510 1425 1424 0.528 1.422

Note that Ei(A) are calculated using (4.5) and Ei(B) using (4.7).

Experimental references:

& ALMENNIGEN, BasTtranseN, and TRA®RTTERERG: Acta Chem. Scand. 12, 1221 (1958).
® CrulcKSHANK and SParkS: Proc. Roy. Soc. A258, 270 (1960).

¢ BASTIANSEN and SRANCKE: Adv. chem. Physics 3, 323 (1961).

obtain these values. For y; the various polynomial expressions [13] which have
been used all give a value for y;(1.397) close to — 2 eV/A so that we can put
b = 0.42*%. The most widely used expression for §; is a constant times the overlap
integral between 2p, orbitals on the two carbons i.e. 8; « 8. For benzene this
gives f; ~ 4 eV/A and therefore we can put g = —0.84. If the relationship sug-
gested by RukpexsEre and MEeHLER [74] and Fismer-Hyarmers [10], ie.
Bi « S(L — 8), is used f; ~ 2.5 eV/A for benzene while if (4.8) is fitted to the
Pariser and Parr value of f; for ethylene [13], f; ~ 9 eV/A so that to some extent
g = —0.84 represents a compromise between these two extreme values, With the
choice of 4 = 0.42 and g = —0.84 in (4.8) and (4.9) then y'/f’ will be constant and
equal to —%. Hence the value of & ini (4.6) will be & as used in (4.7).

The expressions (4.8) and (4.9) could be used directly in the computation of
the bond orders. After each cycle of the iterative procedure the bond orders could
be used with (4.5) or (4.6) to find the bond lengths and hence, via (4.8) and (4.9)
the values of §; and y; which could be used for the next cycle, the iterations
proceeding until there is consistency between the P?, R?, v; and p;. In effect this
is the method ehosen by DEWAR and GLEICHER [9] in their recent calculations. We
prefer to calculate the SCF values for P? with all the §; and y; equal and then use
the bond polarizabilities to find corrections to these bond orders due to the
differences in the f; and y;. From (A5) it follows that the correction P; is given by

P = 39— 5 hPY(0)] [BY — 1.397] 7, (4.10)
?

* The type of expression for y; suggested by Maraaa and Niswmmoro [12] would give a
larger value for 4 but it would also give values for the yr;, between non-bonded carbons, which
are smeller than those we have in fact used.
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where PJ(0) is the value computed with all the y; and f; equal. Obviously (4.10)
must be applied several times until the values of P} 4+ P; and R are consistent
with respect to whichever of (4.5) and (4.7) it is desired to use. This procedure is,
therefore, equivalent in practice, although not in principle, to that used by
Courson and GOLEBIEWSKI [§].

The results of using (4.5) and (4.10) to calculate new bond orders and bond
lengths for butadiene, naphthalene and anthracene are in Tab. 2. Unfortunately it
cannot be said that the new values agree with experiment any better than the old
ones and the average error between theory and experiment is much the same for
both sets of theoretical values. Indeed while the new bond lengths for the 1 — 2
bonds are in rather better agreement with experiment this improvement is gained
only at the cost of introdueing quantitative and even gualitative error in some
other bonds. In particular the new lengths for the 11 — 12 bond of anthracene and
9 — 10 bond of naphthalene are shorter than the corresponding 2 — 3 bonds in
disagreement with both experiment and the previous theoretical results. A similar
situation is found in the work of Drwar and Grercrer [9]. It is, of course, quite
possible that these disagreements are due to experimental error and further
refinements may lead to improved agreement. It seems more likely, however, that
Eqgs. (4.5), (4.8) and (4.9), which, after all, are trying to include ¢ effects in n
theory, are not sophisticated enough for that purpose but it is difficult to see how
they can be significantly improved without revising the whole of 7z electron theory.

5. Foree Constants

The interaction force constant k;; between bonds ¢ and j is defined by

22K
oR18R; (8-1)
With F taking the form of (4.1) there will be no contribution from 9* F/0R; 0R; so
that

kg =

W

ky = PR, %(I/V:fl] + W)
= 2[F'(B) — 5 PYy' (BRI [B'(B)) — & P} ' (B))] wa,g - (5.2)
The stretching force constant for the bond ¢ is defined by
R (5:3)
which from (3.8), (3.11) and (4.1) will be
ki = ["(RY) + Wi . (5.4)

Unfortunately (5.4) involves f”, y” and 8”. However, following along the lines of
Loxeuer-Hiccins and Sanem [21] the bond order-bond length relationship can
be used to replace the terms in f”, »” and £".
If Eq. (4.5) is used this gives
ki = 5.556 [2f(R}) — PYy/ (RO + 2(8'(RY) — & P v (B))Pmia  (5.5)
while (4.7) leads to
o = 26.846 [4 -+ P [26'(RY) — P2y/(BD)] +
+ 2[8'(RY) — % P v/ (B P miys - (5.6)
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Table 3. Force constants in benzene (dynesjem-10%)

Theory Experiment® [16]
Using (5.5)* Using (5.6)»

Stretching force

constant ky, 7.592 7.888 5.553, 5.757
Interaction force
consbants® &y, 0.657 0.657 0.633, 0.430
ks —0.479 —0.479 0.113, 0.317
kg 0.391 0.3 0.573, 0.370
Vibrational
modes® Ky, 8.339 8.634 7.620, 17.620
Ky, 4.929 5.225 3.940, 5.160

a Only applicable for &3, aygs kBay-
® The first values quoted correspond to the assignments of MATR and Horxie for the Ba,
frequencies [J. chem. Physics 17, 1236 (1949)] and the second those of HerzreLp, INGOLD and
Poorz [J. chem. Soc. (Lond.) 1946, 316).
° The bonds are numbered consecutively so that bonds 2, 3 and 4 are respectively ortho,
meta and para with respect to bond 1.
¢ A3, and Bau are respectively the symmetric and antisymmetrie stretching modes.

The experimental determination of the force constants is rather difficult. For
benzene, however, a complete set of values is available [16] and these are compared
with the theoretical values in Tab. 3. On the whole the agreement is satisfactory.
The only real failure is the wrong sign for the meta interaction constant k,; and
this is almost certainly due to o-terms of the form ¢2 F/0R, 0R, which, using the
simple expression (4.1), are taken to be zero.

The force constant for the CC stretching vibration of ethylene can be computed
from (5.5) or (5.6) and the results are 8.93-10% dynes/cm [from (5.5)] and 8.63 -105
dynes/em [from (5.6)]. These compare reasonably well with the smaller of the two
alternative values 10.99-10%dynes/em and 8.84-10° dynes/ecm suggested by
CRAWFORD, LANCASTER and INskE®P [7].

The force constants calculated using SCF theory agree with experiment
almost as well, therefore, as do those calculated using Hiickel theory even though
in the latter calculation parameters were adjusted to give the best agreement
possible.

Appendix

The purpose of this appendix is to revise the equations given in paper I in
order to allow for the possibility of a change in the two electron integrals. In

practice most of the equations given in paper I still hold and, in particular, of the
equations given in section 2 of that paper only Eq. (2.12) need be changed. Since
the two electron integrals always occur in pairs it is convenient to write

gltr,us) = 2(tr,us) — (Ir,su) (At)

and to consider the changes in g(ir,us).
If we write
gltr,us) = gotrus) -+ Ag'{tr,us) {A2)
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and substitute into the SCF equations, the new versions of Eqs. (2.12 a, b, ¢) will be

PO o=l % z P, g°(tr,us) (A3a)
Fl =z + 1 Z P, gO(tr,us) + Z 0 g (br,us) (A3b)
F;',s = 2 Z ut g tT 'LLS + 2 Z Putg tr ’llS) (A?’O)

Eq. (A3b) shows that the equations determlmng the changes in the orbital
coefficients {a;,} and hence P,, will still hold provided we replace z,s everywhere
by zrs where

Zrs = 2ps + % O Plyg'(trus) . (Ad)
ut

Eq. (A3b) remains linear in the a;, so that the effect of several perturbations is
additive. The elements of P’ can, therefore, be written in terms of the polarizabili-
ties wmn,pg and we have

qu > Zmn Tmn,pg - (AB)

m<n

Remembering that g{fr,us) represents two electron terms which must be
treated differently to the one electron terms in the formula for the total energy,
expressions equivalent to (4.3) and (4.4) of paper I can be deduced for the first
and second order energies W’ and W”. The results are

= z 2rs P, sr +z Z P 97- g (t'r us) (A6)

tu
and

ll

ol=

Z ; = % Z Zrs Ztu TTrs,tu - (A7)
rs

rs
t<u
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